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APPLICATIONS OF NEURAL NETWORK MODELS IN
AUTOMATIC SPEECH RECOGNITION

1. INTRODUCTION

There has long been an interest among biologists,

reurophysiologists, and experimental psychologists, in the

manner in which the operation of an individual neuron can

be made to account for the behavior of the entire nervous

system or brain. There has been a parallel and overlapping

interest among computer scientists in demonstrating how

complex behavior can emerge from primitive computing ele-

ments. These interests, taken in the aggregate, constiii,

an area variously known as self-organizing networks,

neural networks, learning networks, or associative

memories.

Most of the study in this area has been theoretical.

Much has been done by computer simulation. It has long

been accepted that in order to demonstrate significant

'intelligent" behavior, or behavior resulting from a high

level of organization, one would need the parallel opera-

tion of millions, if not billions, of these computing ele-

ments. Until recently, this was a practical impossibility.

But great advances in VLSI technology have been made in

the past few years, and the current outlook promises an

ultra lage-scale integration (JLSI), with even larger

chip sizes and greater circuit densities. Some researchers

have therefore turned to the practical considerations of

; . Implementing learning networ:kc.

% ,
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This has brought new life to the study of neuial net-

works, particularly from the point of view of Computer

Science. Here, the motivation for the study is to deter-

mine principles applicable to the construction of comput-

f. ers and computi6g modules for particular applications,

rather than to build faithful models of biological organ-

isms. In fact, computer scientists are to a certain degree

being driven to the neural networks by the prospect of

ULSI, since it is becoming apparent that the traditional

Von Neuman architecture and its multiprocessor generaliza-

tions cannot make efficient use of ULSI circuitry.

In the second section of this report, we review some

of the works that have been published on self-organizing

networks. We summarize the various definitions of learn-

ing, review the research results, and outlire characteris-

Z' tics that distinguish the approaches to neural network

design. Of those studies that were not intended to be pre-

cise models of biological systems, some are abstract

models of pattern recognition, and some are oriented

towards the problems of image recognition. But it is clear

that the principles of neural network design can be

applied to speech recognition as well, as long as the

neural networks are deployed in such a way as to recognize

what is known within the complex structure of speech.

Thus, in the third section, we propose and discuss

the design of a speech recognition system based on neural

* networks. We offer some arguments in support of the notion
that recognition of speech is a task well suited to neural

networks, and that this application will benefit from the

earliest practical implementatiois of the technique.

w °. , ..
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2. REVIEW OF THE LITERATURE

In this section, we review some of the reports in the

literature that describe networks of elements that in some

way represent neurons. The elements will be called either

neurons, cells or units, depending on how closely their

properties are intended to represent those of biological

neurons.

The work of Hopfield [i is useful as a introduction

and overview of many neural networks, since it is purpose-

fully abstract. In his model, a cell has only the most

elementary properties considered fundamental to computa-

tion capability. In particular, the state of cell i is

* represented only by its output or firing rate V i.

In biological nervous systems, the average rate at

which a cell fires is a nonlinear (and apparently somewhat

stochastic) function of its inputs. A model in which V.

can take on continuous values is called a graded-response

model [2). However, in Hopfield's and other elementary

models, Vi takes on only the values zero and one.

The state s of the network is a vector of the states

of the cells. For a network of n cells, s=(V 1 ,V2 ,...Vn).

The purpose of most of the reported neural networks

is to recognize patterns from the environment. In one

class of network, the recognition of a pattern is indi-

cated by the network entering a specific state, or a

S. repeating sequence of closely related states. Thus, let S

represent a set of designated states, or (in Hopfield's

terms) memories. The network will operate as an associa-

tive memory if it can be initialized with some of the

,... , %



-4-

cells set to the values of a particular memory s e S, and

the rest set randomly, and it will then move toward and

enter the memory s. One might then say it retrieves com-

plete information from partial information, or recognizes

a complete pattern from a fragmented pattern.

A biological neuron communicates with another through

a synapse. The strength of the connection from neuron j

to neuron i is a measure of the effectiveness of the

synapse in communicating V. to influence V.. In moreJ 1

abstract terms, the strength of the connection from cell j

to cell i is described by the weighting factor T...

In Hopfield's model, a cell fires if the weighted sum

of its inputs is greater than some threshold

o> U. V. =1iI

~~if Ti V. I

U. V.=O

U. is a threshold value, which could be varied as an ela-1

boration of the model, but is usually zero.

A plastic synapse is one whose strength is modified

through experience. Modification of synapse strength or

connection weight is the central mechanism for learning in

neural networks. The learning rule describes how the

weights T.. are modified. According to the neurological

model proposed by Hebb [3], the strength of a synapse is

increased only as a result of the simultaneous firing of

the pre- and post-synaptic neurons. Hence a learning rule

which modifies T only as a consequence of simultaneousi3

activation of cells i and j will be termed a Hebbian rule.

"4.
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Hopfield's model does not describe how learning takes

place. It assumes that there is a set S of distinguished

network states, each of which represents recognition of a

pattern, and that the weights have been established on the

basis of these states.

T Z2Vi-1)(2Vj-1) (2)

Where the summation is over all distinguished states

s c S, and Ti =0.

By (2), it is seen that if a distinguished state has

one cell active and the other not, its contribution to the

connection weight between the cells is negative. If the

state has either both cells active or both inactive, its

contribution is positive. This rule is consistent with the

Hebbian learning rule, in that the connection strength is

correlated with simultaneous activity of the cells. But

here, the connection strength is specified by the intended

cell activity, rather than caused by that activity.

Hopfield considers the case in which the weights are

symmetric (Ti=T.i) for his analysis. He defines the

energy E of the system by

E = -0.5 [TijViVj  (3)

The change in overall system energy resulting from

the change of the state of cell i is

dE = -dV. [TijVj (4)

It can be shown that with symmetric weights, and cell

'p9



-6-

changes given by (1), the energy of the system decreases

with every cell state change.

The main result is an estimate of the relationship

between the number of designated states N that can reason-

ably be entered into a network of n cells. The equation

(2) places no limit on the number of designated states;

however, if N is too large with respect to n, the network

may wander in state space and never come to rest at a

final state, or else come to rest at a state that has no

relation to the initial state.

A simple error measurement is obtained by starting

the network in a state s C S, and observing how often it
will come to rest at s or a state close to it. The result

is that if N exceeds .15n, the error rate exceeds 50 per-

cent. That relationship seemed to hold independently of n.

A smaller, but not negligible error rate could be obtained

with N=.ln, or about ten network cells per designated

state.

Networks of the kind defined by Hopfield can be

implemented in silicon. The weights on the links are not

determined by the operation of the network: they could be

established at the time the chip is created, as a ROM.

While many circuits may be required, the network will be

insensitive to the failure of a few, hence be amenable to

5. ULSI or wafer-scale integration.

V.I
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Silverman, Shaw and Pearson [41 describe another

model in which the network as a whole enters a particular

state in response to an environmental stimulus. In their

model, each element, called a "trion", is intended to be

an abstraction of a cluster of about a hundred neurons.

Each trion may assume one of three possible states: +1,0

or -1, respectively corresponding to high, average and low

output firing rates. Let g(S) be the initial probability

that a particular trion is in state S. The initial firing

rates are assumed to be such that g(O) >> g(-l),g(l).

The state of the system at time n is related to the
system states at times n-I and n-2. Let S., so, and S''.
s e t sth .

be the states of the j trion at times n, n-i, and n-2

respectively. Then Pi(S), the probability of the i th

trion being in state S at time n is given by

P. = g(S)exp[B'Mi'S]/Eg($) exp[B'Mi's] (5)

S

where

M [ VS'j + WS''j I - Vi

t.
V.i is a threshold, and B is inversely proportional to
noise. Each trion is influenced by the states of its

neighbors at the previous two time steps. Hence, V.. and

Sij are the interaction weights between trion i (at time

n) and trion j at times n-i and n-2 respectively. The

weights may be positive or negative, corresponding to

excitatory or inhibitory interaction.

The network used in the simulations consisted of six

trions arranged in a circle. Each trion interacted with

itself and and its two nearest neighbors on the left and

~ ~ .A.,



-8-

right. The V and W weights were assigned as +1 or -1.

Networks based on various assignments for the weights

were usually found to fall into one of a few stable firing

patterns, consisting of repeating trion firing sequences

of various lengths.

The parameter B may be thought of as thermal noise or

random variations in cell output. As B decreases, the

noise level increases, resulting in occasional random

errors. This may cause the firing sequence to change to a

nearby pattern, which could be interpreted as a form of

associated recall.

The firing patterns that develop in a network with

assigned values for the weights may be enhanced by Hebbian

learning rules of the form

dV = e [Si(n)S (n-1)] (6)

dW = e2[Si (n)S (n-2)] (7)

where e>O.

The network might be considered "naive" before the

Hebbian learning rules are applied, in the sense that the

only connections between cells are those that are

prewired, or genetically determined. Once the learning

rules take effect, the network learns from experience to

choose firing patterns appropriate to a given input pat-

tern.
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In the model described by Ackley, Hinton and

Sejnowski [61, the network output consists of the state of

a relatively small number of higher level cells (which the

authors call units) in a hierarchical architecture. The

novelty of this model is found in the use of thermal noise

as an essential element in the search for optimal global

solutions.

Cell i has output Si, which is either zero or one.

The weight on the connection between cell i and cell j is

W. The overall energy E of the system is defined by

E =-Z[WijSiSj ] + [QSi] , (8)

9mwhere Q is a threshold.

Let dE k be the energy difference between a state with

cell k on and cell k off:

dE - '.[WkiSi] -Qk (9)

i

Global energy is minimized by increasing the weights

for co-active cells, a Hebbian rule. If a single cell is

assumed to be constantly on, the threshold term can be

included in the interactions between cells, simplifying

the above equations:

E = -i ]S.s (10)

d~~k E [WiS i ] (i
k kiJ

I"

-. o
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N

Noise is utilized to help the system escape from
local energy minima. The Sk values are not fully deter-

mined by the system state and weights. Instead, there is a

probabilistic decision. Let Pk be the probability that Sk

will be set to one. The cell state transition is described

by

Pk= I/(I + exp[-dEk/T ). (12)

As dE gets larger, Pk approaches 1. As T gets larger, Pk

approaches zero. Therefore at low T, a relatively small

energy gap can cause a change in sta.e, and at high T, a

large dEk is needed to set Pk to one.

At equilibrium,

P a /P b = exp[-(Ea-Eb)/T] , (13)

where P and P are the probabilities of the a and b glo-
a b

bal states.

Low T favors states with low energy, but the rate at

which the optimal state is approached is slow. High T

favors low energy less strongly, but the time to reach

equilibrium is reduced.

The information gain of the system is defined by

G = 1 S[P(Va ) ln[P(Va)/P'(Va)] ]

a
where P(V ) represents the probability of the networka
being in state a with the network "clamped" (the states of

some of the cells are fixed by the input pattern), and

P'(V ) is the same probability when the network is free
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running. For example, if for all a, P(V a)=P'(Vaj, the

information gain G is zero.

Gradient descent is performed by modifying link

weights:

dG/DWij = -(l/T)(Pi j - p'ij) (15)

where Pij and p'ij are the probabilities that both cells i
and j are active when the network is clamped and free-

running, respectively, in thermal equilibrium. Therefore,

the network adapts to stimuli by changing link weights in

proportion to pij and p'ij respectively.

dWij = e(Pi- P'ij

where e is a constant.

* By the equations above, if a pair of cells have a

higher probability of being concurrently active when the

network is clamped than when free running, weight will be

added to the link between them. This will result in a

decrease in system energy.

The weight increment dW.. is determined entirely on

the basis of locally available information, while affect-

ing the global energy level. Minimizing G is the process

-, of the network capturing regularities in input patterns.

The authors provided results of simulations involving

two layered networks of various sizes. When seeking

equilibrium, the system was run at a series of decreasing

temperatures, so that the global energy minimum was

-. approached in a reasonably short period of time, while

still avoiding capture at local energy minima. The

.4.'

'



- 12 -

concept of slow reduction of temperaLure in order to

-achieve an optimum result is known as annealing. Its use

in optimization algorithms in general is discussed in [7].

Because the probability distribution used to deter-

mine state changes was the Boltzmann distribution,

parameterized by temperature, the network was called the

Boltzmann machine. It was run to solve a series of binary

encoding problems. As the complexity of the problems

increased, the number of learning cycles required to solve

the problem also increased, and in some cases the best

solution was not found.

U .

a.

Me
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Rummelhart and Zipser [7] also describe a multilay-

ered hierarchical architecture with Hebbian learning

rules. In their model, the inputs to a cell at one layer

come from the cells at the layer below. The weights asso-

ciated with the inputs to a particular cell sum to one.

The network includes the powerful feature of lateral

inhibition, in which an active cell can inhibit the cells

at the same level. In the model of [7], cells are arranged

in clusters. All cells of a cluster receive the same

input signals, but each cell weights them differently. The

cells output either zero or one. The cell with the largest

weighted input in the cluster outputs one; all others have

zero output. The mechanism of the cluster may be thought

of as a competition, in which the cell that wins the right

to output also inhibits the other cells of the cluster.

The cells at the lowest level of the hierarchy represent

the input pattern or stimulus.

The learning rule for this model is the following.

The weight on the input to cell j from cell i on the lower

level is W... If pattern Sk is presented to the network,
cik will be the output of cell i (on the lower level). For

each pattern Sk, the weights on the inputs to a cell are

modified only if the cell wins the competition within its

cluster. That is, with pattern Sk,

dW..= 0 if cell j loses,

and

dWj= g(c ik/nk) - g W if cell j wins. (17)

Here, nk is the number of active cells in pattern Sk;

S.
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nk = Cik

Let Vjk be the probability of cell j winning on

presentation of stimulus Sk, and let Pk be the probability

of Sk being presented on a given trial. At equilibrium,

SdW ijVjkP k = 0 . (18)
k

As in the works described above, the authors define

a global energy term. In this case, the parameter T quan-

tifies system stability, and hence is the negative of

energy.

T= EPk [Vjk(ajk-aik)]] (19)

where, k 3,

ajk = ijCik]

T is the amount by which the weighted input to winning

cells exceeds the weighted input to all other cells, aver-

- aged over all stimuli. Since T is the negative of energy,

it must be maximized.

A weakness of the learning rule based on competition

'is that if some cells original (naive) are not related to

*. any stimulus, it may never win the competition, hence

never learn. A modification of the learning rule permits

"leaky learning" in which all link weights are modified;

5'.

,/-
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dWi " glc - g if cell j loses on Sk

and

dWij = gwcik - gwWii if cell j wins on Sk (20)

where gw>>gl. With this rule, cells that constantly lose

the competition move slowly towards the active patterns,

so as to eventually win.

The authors describe simulations of networks with

varying numbers of input cells on the lower level, and one

cluster of two units on the upper level. A few letter

recognition experiments worked predictably well. Difficul-

ties were exposed in the attempts to train the upper level

cells to distinguish between vertical and horizontal

lines. Each of the pattern sets that should be recognized

as similar (the set of vertical lines and the set of hor-

izontal lines) consist of disjoint elements: parallel

lines do not intersect. But by the pattern recognition

scheme, patterns are recognized as similar by the number

of points they have in common. Therefore, because of the

single point they have in common, a vertical line and a

horizontal line are considered more alike than any pair of

horizontal or vertical lines. The result of exciting the

network with a series of vertical lines and horizontal

lines is that the upper levels systematically discard

exactly what they are intended to capture.

The authors demonstrate that their model can be

trained to capture the idea of vertical vs. horizontal in

the following way. The higher level clusters are
increased from two to four cells each, and a third level,

with a single cluster of two units is added. Then each

L,
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time a vertical line was presentea on tne right side of

the input matrix, it was accompanied by a vertical line in

the leftmost column. Similarly, horizontal lines were

accompanied by a horizontal line in the uppermost row. The

vertical "training patterns" had more points in common

with each other than with horizontal training patterns, and

so the level two units easily learned to distinguish

between them. With four cells on the second level, two

would develop weights that would allow the recognition of

vertical training patterns: they divided this set between

themselves. Two cells would similarly recognize horizon-

tal training patterns. When the training lines were

removed from the input patterns, the remaining parts of

the patterns were recognized in the same way. And since

there are two second-level clusters, the third level would

always have two out of eight inputs active, from which it

would easily distinguish the vertical from the horizontal

patterns.

A A
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In the work of Grossberg [81, an "on center/off sur-

round" architecture is described. Each cell receives, in

addition to its own (center) input, weighted negative

inputs which are the center inputs to neighboring cells.

The cells are organized in layers; layer one or v1  con-

sists of cells V1ilV 1 2 1 .,V 1 . The output of cell Vli

is the continuous variable xli. (This is a graded-

response model.) At level one, the cells are excited by

an external pattern. I. is the part of the pattern

presented to Vli to compute xli.

The equation governing output by a given neuron is

dxli = -Axli + (B-xli)Ii - Xl..Ik (21)

k-4i
where B>x li

The first term in (21) specifies exponential decay

of the output, based on the constant A. This permits

gradual loss of memory.

The second term is the "on center" part of the

expression. If I. is large, and xli<<B, then dxli is

strongly positive, and xli becomes larger.

The third term is the "off-surround". It decreases

the output of Vli in proportion to the sum of the input

pattern surrounding that part of the pattern presented

directly to Vli.

Let I = Ik and let Q= I.I. At equilibrium,k[ k i

Xi= Q.B-I/(A+I) (22)

The internal network outputs are adjusted to be relative

r -

.. .. . . .. Z _.
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to the intensity of the input pattern. This mechanism

works like an automatic gain control.

To store patterns after input ceases, a reverberat-

ing architecture is proposed. Cells on level two excite

* and inhibit level three cells by the on-center/off-

surround technique. Level three cells in turn excite the

level two cells in the same way. This may be described

by the equation

dx2 3 = -Ax 2 +(B-x 2 )[f(x 2.)+I 2 ] -x2j(x (23)

k* I
where f(w) is a feedback signal produced by average

activity w. In (23), the on-center term is related to

both the original input pattern and the feedback signal

from level three. The off-surround term is from units on

the third level. Since these units are excited by neigh-

bors of V2j, the cell V2j is indirectly inhibited by its

neighbors.

Let Zij be the link weight from Vli to V2j, and Dij

be the signal from Vli to V2j. The learning rule is

d.=-.. + -D.(24

dZi= -c ijx2j, (24)

where cij is the decay rate of Zij. The second term of

the above expression indicates that the learning rule is

Hebbian; the weights are increased whenever the pre- and

post-synaptic cells are active.

The model offers two possible scenarios for pattern

capture; choice, and partial contrast.
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choice:

I if S. > maxle, Sk:k<>j I

0if S. < maxle, Sk:k<>j I

contrast:

f( MSk) if S.> e
Sxii = Skye

0 
if S < e.

In the choice mode, only the cell with the strongest

excitation (above threshold e) becomes active. In par-

tial contrast, all cells above threshold respond in pro-

portion to their relative input levels above threshold.

There is a noteworthy degree of underlying similar-

ity between Grossberg's model the Trion model of Silver-

man, et. al. In Grossberg's model, firing patterns

reverberate (and are enhanced) between levels two and

three of the network. In the Trion model, patterns

reverberate temporally and spatially; each trion may be

subject to excitation or inhibition from itself and its

neighbors (all on a single level) over the past two time

periods. It does not seem unreasonable to suppose that

the temporal aspect of the Trion model could in fact just

as easily be represented with a reverberating spatial

pattern.
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Fukushima [9] describes a multilayered network with

a modified Hebbian learning rule and a partially stochas-

tic interlayer connection pattern. The learning rule is

* the following: Connections frcm cell x to cell y are

reinforced i2 x fires and y is firing more strongly than

any other post-synaptic cell in its neighborhood. Among

cells in the vicinity of a particular cell, only one is

reinforced at a given time.

This learning rule bears a strong similarity to the

Wcompetitive learning' mechanism of Rummelhart and Zipser

(71, in that only only one cell in a particular grouping

is reinforced. But it is not, strictly speaking a

*lateral inhibition mechanism, since the neighboring cells

are not prevented from firing. After learning has taken

place, only the one cell responding to a particular pat-

tern will fire.

Suppose u(i) and v(i) are the ith excitatory and

inhibitory inputs, respectively, to a particular cell.

Let a(i) and b(i) be the respective conductances

(weights) of these inputs. The rule for determining the

output W of a cell is described as follows.

W = f[( l+a(j)u(j) )/(l+7b(j)v(j) ) - 1] (25)

where f[x] =0 for x<0 and f[xl=x for x 0.

Suppose e and h respectively represent the total

excitatory and inhibitory inputs to a cell:

e = Ia(j)v(j) and h =7b(j)u(j)

Then (25) can be rewritten as
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W = f[(l+e)/(l+h) -11 = f[(e-h)/(l+h)] (26)

Then the gain control mechanism for the cell output can

be seen. If h<<l, W is approximately f[e-h]. If e>>l and

h>>l, W is approximately f[e/h)-l]. This last condition

is the state of the network after learning has occurred.

The weights a and b increase indefinitely. For this rea-

son, thresholds do not make sense for this model.

Each cell at level k receives excitatory inputs from

cells in a particular area on the next lower level (its
Mconnectable area'), and one inhibitory input from the

same area. The index j will span the connectable area.

Then Ukl (n+j) will be an excitatory input to cell n at

level k, from cell n+j at level k-l. The inhibitory cell

on the lower level receives input from the same cells as

excite the upper level cell. Thus, the inhibition of cell

n at level k is the sum of the excitatory inputs to that

cell, multiplied by the (unmodifiable) weights from exci-

tatory to inhibitory cells within level k-l.

vk(n) Ck1 l(j) Uk-l(n+j) (27)

The excitatory input to cell n at level k, u k(n), is

greater than zero if the sum of the excitatory inputs

from the connectable area on level k-i is greater than

the inhibitory input.

uk = f[(l+yak(Jn)uk-l(n+j) )/(i+bk(n) vk-l(n)) -11 (28)

The equations for modification of excitatory and

inhibitory connection weights are such that if no cell in

. i . .. , . . . 7 . . . , . . . , . . . . . . . . . . . . . , - . .. - -.- t
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the neighborhood of n is firing, all cells are (weakly)

reinforced. If one cell is firing more strongly than the

others, it is the only one to be reinforced.

Let gk(n) be a function that takes on the value one

if no cell in its vicinity is firing more strongly (i.e.,

uk(n)>=uk(n+j), and value zero otherwise. If u k(n)=0

then

dak(jn) = qock1l()uk-1 (n+j)ogk(n) (29)

dbk(n) = q0.vk-1 (n)-gk(n). (30)

If uk(n) > 0 then

dak(j,n) = q 1 .ck 1l(j).uk-1 (j+n).gk(n) (31)

dbk(n) = k a(Jn)ukl (j+n) )/(2 vkl (n))I.gk(n), (32)
d

Excitatory reinforcement from a cell on level k-I to a

cell on level k is a constant times the output level of

the level k-i cell, provided that the total excitation to

the level k cell is is higher than to any other cell in

its vicinity. If the level k cell is receiving subthres-

hold excitation, the reinforcement is weaker than if it

had suprathreshold excitation.

The equations for reinforcement of inhibitory con-

nections, similarly, only apply for the most strongly

excited level k cell in its vicinity. For the subthres-

hold case, reinforcement is a constant times the output

of the level k-i inhibitory cell. For the suprathreshold

case, the reinforcement equation is more complex, but has

the following implications.
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Let r(i,n) be the ratio of excitatory to inhibitory

reinforcement;

r(j,n) = da(j,n)/(ck l (j) db(n)).

It can then be shown that

r>l if uk(n)=0 and uk-l(n+j)>v kl(n+j) or

if uk n)>0 and u2(n+j)>C2_l(n+z)/(2Vk(n)).

z
The first condition means that if cell n is not receiving

suprathreshold levels of excitation, then only if the

level of output from the excitatory cell on level k-i

exceeds the (weighted) output of all cells in its vicin-

ity (which is the definition of vk-l(n)) will excitatory

connections from level k-l to level k be more strongly

reinforced than inhibitory connections. The equation for

U k(n)>O shows that (in the simplified binary case) if a

cell responds stronger than 1/2, its excitatory connec-

tions are more strongly reinforced than its inL.ibitory

connection.

The result of these equations is that cells in a

given vicinity responding most strongly to stimuli from

the previous layer have their excitatory connections

enhanced while weakly responding cells have their inhibi-

tory connections enhanced. Over time, the network

evolves so that the number of cells in a vicinity

responding to a particular stimulus approaches unity.

Fukushima discusses different strategies for inter-

connecting network layers. For the case where cells in

all layers have equal connectable areas on the previous

layer, many layers are required to cover a large area on

-. . . . . . . . . . . . . a
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the lowest layer. If the connectable areas decrease wit.

increasing depth into the network layers, the uppermost

level will be connected to a larger area of the input

layer. The problem with this is that too much overlap

occurs, so that only one or a few cells fire on the

uppermost layer. Fukushima considers this to be undesir-

able, since a "concept" should consist of a more complex

pattern. And, no further processing on higher network

levels could occur since cells on the next higher level

would have only a single firing cell in their connectable

areas a given time.

Fukushima uses bifurcating excitatory connections.

One goes directly to the cell in the corresponding posi-

tion on the next lower level, and the other is probabil-

istically connected in a manner such that large spatial

deviations are less prone to occur than smaller devia-

tions. with this method, each cell on the uppermcst

level is connected (in a somewhat stochastic manner) to

the entire input field.

Simulations were run using four 12x12 layers with

letters as patterns at the lowest level. Fukushima shows

how individual units on the fourth layer capture the

entire pattern presented to the first layer, while cells

on the third and second levels capture smaller parts of

the pattern.
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class cells. This is a form. of lateral inhibition.

The matrix functions as follows. The initial

transfer weights of all cells are assumed to be small, so

that the initial excitation by a pattern impinging on the

imaging matrix produce only feeble, random firing of the

filter cells. But when such firing occurs, the connec-

tions of the active mosaic cells to the filter cells will

be reinforced, thus making the filter cells that fired

more sensitive to the pattern. Whenever the pattern is

again presented, the sensitized filter cells fire at a

higher rate, eventually triggering a class cell. The

first class cell to fire also causes the inhibitory reset

N cell to fire, thereby preventing all other class cells

from firing. Thus, after the Hebbian conditioning, only

one class cell will be active for a given pattern. But

the bifurcating branch of the class cell is adaptively

linked to the mosaic cells. The synapses on those mosaic

cells that were excited by the pattern are reinforced.

Now consider the possibility that the class cell that

responded to the pattern is stimulated by some external

signal, such as might result from some higher intellec-

tual function, or just randomness. Then the original pat-

tern will be regenerated in the mosaic cells. This is the

basis for the function of "imagination" in this neural

network.

Trehub also discusses a "novelty detecting" cell.

This cell slowly accumulates the excitatory input from

the imaging matrix. If a class cell fires, the novelty

detector is reset. But if no class cell responds to the

input in a certain period of time, the novelty cell would

reach its threshold and fire. The consequences of the

I.o

I .o ~
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novelty cell firing would be to lower thresholds

throughout the set of filter cells, allowing an unmodi-

fied filter cell to fire, capturing the pattern.

Trehub describes an organization of special purpose

interacting networks called "retinoids", which perform

transformations such as translation, rotation and scaling

of the input pattern. Each of these subnetworks would be

activated by a particular neuron, and the transformed

pattern would then be re-presented to the class cells.
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3. TECHNICAL DISCUSSION

OUTLINE FOR NEURAL-NETWORK BASED SPEECH RECOGNITION

Neural networks have been studied either for the

abstract problem of pattern recognition, in which the

nature of the patterns is not specified, or else for the

specific application area of image analysis. None of the

works surveyed explicitly addressed the problem of speech

recognition. Yet the body of general aid image- oriented

neural network research illuminates several possibilities

for neural-network based recognition systems for speech.

In this section, we will outline such a system. It is

based on both the neural-network research and traditional

speech-recognitions systems.

At the theoretical level, speech recognition is no

different than image recognition. A given (isolated)

utterance can take the form of the two-dimensional pat-

tern x(f,t), representing the magnitude of the frequency

component f at time t. But without taking the specific

nature of the speech signal into account, one is

presented with immense computational difficulties. In

order to make the necessary distinctions between utter-

ances, the number of points required for x(f,t) would be

in the thousands, and the number of cells required for

successful recognition would be beyond the scope of any

conceivable implementation. Furthermore, the approach

would work (if at all) only for utterances of fixed

length, and would not be generalizable to utterances of

greater length.

l.4
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Yet some of the techniques o" netdork , si ns used

in image analysis may be helpful in -,peci tc ;i-5tisks 3f

speech recognition problem. Consider the well-known

techniques of adjusting for variations in amplitude (nor-

malization) and time (dynamic time warping) in a speech

signal presented to a traditional recognition system

based on matching stored templates. There are analogous

operations for image recognition: rotation, translation,

and scaling. These analogous operations have been stu-

died, and neural networks have been proposed to effect

them. See, for example, [10]. Variations of these tech-

niques should be accessible where needed for the speech

recognition system. The details of these mechanisms will

not be developed in the outline of the speech recognition

shown here.

The most successful speech recognition systems

employ the sort of layering that is necessary to reduce

the amount of learning that must be performed by a sin-

gle neural network. Each layer attempts the recognition

of successively larger sound units, and passes the condi-

tionally recognized items to the next higher layer.

This layered organization is quite similar to the

structure of the perceptron - an early neural network

model [111. The perceptron and related models performed

a unidirectional transmission of signals from input layer

to output layer. They employed unsupervised learning:

feedback from the external world determined the modifica-

tion of link weights. Specifically, weights on the

active cells were increased if the network produced the

correct response, and were decreased if the response was

incorrect. The perceptron was subjected to mathematical

.1
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analysis that showed its power to oe less than what had

been expected, and so the research interest moved on to

more general models. [12] However, the experience with

the perceptron and related unidirectional hierarchical

models showed the difficulty of effecting supervised

learning in a layered structure. Whenever such a model
produces the wrong response, the learning, or modifica-

tion of excitatory weights, affects the cells that

operated correctly as well as those responsible for the

errors. The problem is that when wrong responses occur,

it is impossible to tell which level is responsible.

But if the system is layered in such a way that the

outputs of each layer are understandable units,

feedback-conditioning loops can be applied for each

layer. This provides the basis for the proposed neural-

network based speech recognition system.

Figure 1 is an outline of a neural-network based

speech recognition system. The recognition system is

comprised of several successive "modules" of cells with

* plastic links. Each of the neural modules is comprised of

several layers of cells. The cell links are modified in

the "supervised learning" mode: the weights of active

cells are either increased or decreased depending upon an

external signal that indicates whether the response of

the module was correct. Thus, the output of each module

is converted into a signal that can be displayed to the

user of the system, who provides the response.

The need for presentation of the module output to

the user does not mean that the module output must itself

be a unique code indicating the object recognized. It is
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Figure 1
Outline of Neural-Network Based Speech Recognition
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the nature of neural networks to process oatterns in

'fuzzy" way. A small increment in the weight o~f any link

in the network zould result in the variation of a single

bit of the output: but this should not be considered a

different result. Hence, the patterns representing the

desired results of each module should be separated by

Hamming distances of at least three, allowing for one-bit

error correction. (For integration of the modules into

one fluid system, the separation of the output codes

should be much greater.) The units marked "focus" in the

figure are fixed combinational logic whose purpose is to

provide a single unique code for each output, from the

fuzzy variations produced by the module.

It should be emohasized that the training mode, with

the feedback loops, exists only to assist the system to

make the correct responses, by training its operation at

the appropriate level. In the operating mode, it will not

be necessary for the user to provide feedback, and the

modification of link weights will be turned off, or

drastically attenuated.

Each of the modules operates at a different level of

organization of the input signals. The input signal is

digitized, accumulated into frames (at intervals of 5-30

ms.) and filtered to obtain either a set of LPC coeffi-

cients or a representation of the frequency spectrum.

These, along with an indication of the amplitude of the

speech signal, provide the input to the first neural

module.

The first neural module determines phonemes.

Phonemes are the linguistic units (or sound elements)
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that are defined by their ability to make the critical

distinctions between words. Linguists identify about 40

phonemes for English. A dictionary of phonemes, and com-

mon words in which they occur, will be made available to

the user, so that he can pronounce them (in his own

voice), and train the system to recognize them. The

phoneme identification (output of the "focus" unit) need

be no more than six bits. However, the phoneme module

output should be significantly greater. For example, a

sixteen-bit representation would allow for a Hamming dis-

tance of seven between phoneme codes, providing three-bit

error correction.

The second neural module recognizes linguistic units

called syltypes. The syltype, which is defined and used

in the Hearsay-II speech understanding system, represents

a class of syllables. [13,14] The number of distinct syl-

types in a given vocabulary is only a small fraction of

the number of distinct syllables found in the vocabulary.

The set of syltypes is determined by grouping the

phonemes into classes based on similarity of sound: there

may be seven such classes. Then, for a given vocabulary,

a state transition diagram is developed. The states are

the phoneme classes, and the transitions through the

diagram (involving one to about six phoneme classes) are

the syltypes.

The relationship between the number of syltypes and

the vocabulary size is given in [141. A 1000-word voca-

bulary requires about 250 syltypes. Thus, the output of

the syltype recognition module need be only eight bits.

But for seven-bit separation between syltype codes,

allowing 3-bit error correction, the output of this unit
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should be 21 bits. The syltype focus unit will then be

able to provide the user with a unique code for the

recognized syltype, and allow the user to return the con-

ditioning signal. It is assumed that the user will have

an online dictionary of syltypes and associated syll-

ables, so that he may easily determine whether the recog-

nition is correct.

Some additional structure, apart from the neural

modules, will be required to resolve the differences in

time scale at each level. The output of the phoneme

module, for example, is a single phoneme, but a syltype

is determined by a sequence of phonemes. Therefore, some

sort of memory is required at the input to the syltype

unit. This memory may be a sequence of one-phoneme

latches, each of which is set upon the appearance of a

phoneme. (See Figure 2.)

One output of the phoneme unit is a "phoneme recog-

nized" signal, activated whenever there is a sufficiently

strong similarity between the input signal and the sig-

nals of the training set, encoded into the module link

weights. Then successive activations of the "phoneme

recognized" signal cause successive phonemes to be

latched. And, upon the recognition of a syltype, a "syl-

type recognized" signal will reset the phoneme counter.

The form of synchronization implied in the structure

of Figure 2 is an attempt to overcome one of the greatest

difficulties of the neural network approach to speech

recognition: the variation in the speed of speech. The

solution shown in the figure, which reverts to sequential

digital logic, is certain to be one of the weakest links
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of the system. A single-bit error, such as the failure

or inappropriate activation of the "phoneme recognized"

or "syltype recognized" signals would terminate success-

ful recognition. However, there are modifications of the

proposed outline that will ameliorate this weakness. One

possibility is the operation of several recognition banks

in parallel, activated by recognized signals of various

degrees of sensitivity. Another is the design of

special-purpose neural networks that will be trained to

provide the latching internal to the network.

The third neural module in Figure 1 is the isolated

word recognition module. The input is a sequence of syl-

types, latched in the same manner as the phonemes are at

the input to the syltype recognition unit. The word

recognition unit requires only a ten-bit output for a

1000-word vocabulary. A 27-bit output will provide

three-bit error correction. To enable word recognition

at the third neural module, the particular phonemes used

in the syltype, that is, the exact syllable, should be

employed. Therefore, the path from the phoneme unit to

the word recognition unit is provided as well.

As it is shown in Figure 1, the continuous speech

recognition module takes its input from the isolated word

recognition module. This is an oversimplification. The

greatest difficulty of continuous speech recognition is

precisely that words cannot be isolated. Even if the word

boundaries were marked, a unit that recognizes words in

isolation would not necessarily recognize the word as it

appears in continuous speech, because of the modification

of the beginning and ending phonemes to merge with those

of the adjacent words, and the variations in accent and

..vv*,... . .*
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intonaticn induced by the crnntext. However, a neural

network that has been conditioned to recognize words in

isolation would be expected to provide some response on

the "word recognized" output line, as syllables and

phonemes are presented to it, even if it does not exceed

the threshold required for recognition.

Thus, the scheme shown in Figure 3 is proposed. It

uses the partial recognition capability of isolated word

recognition modules in conjunction with a network that is

conditioned only in the continuous speech recocgnition

mode. Each of the three isolated word recognition

modules is operated in parallel, to receive the identical

modifications to the link weights, when operated in the

isolated word (training) mode. In the continuous speech

recognition mode, the elements recognized at lower levels

(syltypes and phonemes) are latched at the input to the

lower isolated word recognition module. Upon some

activity of the "isolated word recognized" signal, the

entire group of latched inputs is shifted up to the next

isolated word module. Then further syltypes and phonemes

are presented to the lower module, and both inputs are

shifted up upon some combined activity of the "isolated

word recognized" signals.

The continuous speech recognition module is the net-

work of cells that fills the areas of Figure 3 that are

not occupied by an isolated word recognition unit. It

takes its input from the results of each of the isolated

word recognition modules, as well as the inputs to those

modules. In the training mode, continuous speech module

links are modified by correct recognition of sequences ol

words. The isolated word units receive a lesser

-- Q-
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4. CONCLUSIONS

The research papers that were reviewed showed that

neural network models can be defined in a variety of

ways, but that networks with lateral inhibition seem to

offer greater discrimination capability per network cell.

From Hopfield's model [i], one would expect tnat a module

that can recognize 40 phonemes at a low error rate would

have at least 400 cells. But the experiments by Rum-

melhart and Zipser [7], using competitive learning (a

form of lateral inhibition), indicate that 40 distinct

and fixed patterns could be recognized with just 40

cells. Because of the noisy nature of the data, the

number of cells required to recognize the phonemes in

real speech will be greater than that implied by these

elementary results. But with the benefit of lateral

inhibition, this number should not be more than a few

. thousand at most.

The number r- f co is rei , ro-d in the remaining speech

n Lti ) t n m (), 1 'm )to that of the p ho nem

m ok I ?. Thus, the p)f';ed ': ,, n,(ira1-network basedJ

speech -zcojnition s ,! n i,' v"ien )b t() development ,il
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validation through simulation modelling. Within a few

years, chips will be available for the implementation of

the neural networks. Systems based on these hardware coin-

ponents, possibly organized according to the outline

given here, will be built. They will be simpler, and have

superior learning and recogintion capability than the

sequential systems in use today. Considerable work

remains to be done to realize this promise.
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